FDD Massive MIMO Channel Estimation with Arbitrary 2D-Array Geometry
نویسندگان
چکیده
This paper addresses the problem of downlink channel estimation in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems. The existing methods usually exploit hidden sparsity under a discrete Fourier transform (DFT) basis to estimate the cdownlink channel. However, there are at least two shortcomings of these DFT-based methods: 1) they are applicable to uniform linear arrays (ULAs) only, since the DFT basis requires a special structure of ULAs; and 2) they always suffer from a performance loss due to the leakage of energy over some DFT bins. To deal with the above shortcomings, we introduce an off-grid model for downlink channel sparse representation with arbitrary 2D-array antenna geometry, and propose an efficient sparse Bayesian learning (SBL) approach for the sparse channel recovery and off-grid refinement. The main idea of the proposed off-grid method is to consider the sampled grid points as adjustable parameters. Utilizing an in-exact block majorization-minimization (MM) algorithm, the grid points are refined iteratively to minimize the off-grid gap. Finally, we further extend the solution to uplinkaided channel estimation by exploiting the angular reciprocity between downlink and uplink channels, which brings enhanced recovery performance.
منابع مشابه
Channel Estimation for TDD/FDD Massive MIMO Systems with Channel Covariance Computing
In this paper, we propose a new channel estimation scheme for TDD/FDD massive MIMO systems by reconstructing uplink/downlink channel covariance matrices (CCMs) with the aid of array signal processing techniques. Specifically, the angle information and power angular spectrum (PAS) of each multi-path channel is extracted from the instantaneous uplink channel state information (CSI). Then, the upl...
متن کاملA Graph Theoretic Approach for Training Overhead Reduction in FDD Massive MIMO Systems
The overheads associated with feedback-based channel acquisition can greatly compromise the achievable rates of FDD based massive MIMO systems. Indeed, downlink (DL) training and uplink (UL) feedback overheads scale linearly with the number of base station (BS) antennas, in sharp contrast to TDDbased massive MIMO, where a single UL pilot trains the whole BS array. In this work, we propose a gra...
متن کاملChannel Estimation for Fdd Massive Mimo Using Bayesian Estimator
Massive MIMO systems that for a cellular network, the channel from user equipment to a base station is composed of few grouped paths in space. With a very large antenna array, signals can be observed under extremely sharp regions in space. In the FDD mode, each BS sends a downlink training matrix to its served UEs which estimates the desired channel based on the downlink measurements and feeds ...
متن کاملSemi-Blind Channel Estimation based on subspace modeling for Multi-user Massive MIMO system
Channel estimation is an essential task to fully exploit the advantages of the massive MIMO systems. In this paper, we propose a semi-blind downlink channel estimation method for massive MIMO system. We suggest a new modeling for the channel matrix subspace. Based on the low-rankness property, we have prposed an algorithm to estimate the channel matrix subspace. In the next step, using o...
متن کاملCoded CSI Reference Signals for 5G - Exploiting Sparsity of FDD Massive MIMO Radio Channels
Future 5G systems are expected to provide higher performance, partly unleashed by massive MIMO as well as tight cooperation like joint transmission CoMP. For paired and unpaired spectrum below 6 GHz RF-frequency bands, frequency division duplex as well as time division duplex (FDD/TDD) has to be supported. The use of large cooperation areas over several cells together with massive MIMO downlink...
متن کامل